DataFrame.
sum
Return the sum of the values for the requested axis.
This is equivalent to the method numpy.sum.
numpy.sum
Axis for the function to be applied on.
Exclude NA/null values when computing the result.
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA.
min_count
New in version 0.22.0: Added with the default being 0. This means the sum of an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.
Additional keyword arguments to be passed to the function.
See also
Series.sum
Return the sum.
Series.min
Return the minimum.
Series.max
Return the maximum.
Series.idxmin
Return the index of the minimum.
Series.idxmax
Return the index of the maximum.
DataFrame.sum
Return the sum over the requested axis.
DataFrame.min
Return the minimum over the requested axis.
DataFrame.max
Return the maximum over the requested axis.
DataFrame.idxmin
Return the index of the minimum over the requested axis.
DataFrame.idxmax
Return the index of the maximum over the requested axis.
Examples
>>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64
>>> s.sum() 14
Sum using level names, as well as indices.
>>> s.sum(level='blooded') blooded warm 6 cold 8 Name: legs, dtype: int64
>>> s.sum(level=0) blooded warm 6 cold 8 Name: legs, dtype: int64
By default, the sum of an empty or all-NA Series is 0.
0
>>> pd.Series([]).sum() # min_count=0 is the default 0.0
This can be controlled with the min_count parameter. For example, if you’d like the sum of an empty series to be NaN, pass min_count=1.
min_count=1
>>> pd.Series([]).sum(min_count=1) nan
Thanks to the skipna parameter, min_count handles all-NA and empty series identically.
skipna
>>> pd.Series([np.nan]).sum() 0.0
>>> pd.Series([np.nan]).sum(min_count=1) nan