Series.
max
Return the maximum of the values for the requested axis.
If you want the index of the maximum, use idxmax. This isthe equivalent of the numpy.ndarray method argmax.
idxmax
numpy.ndarray
argmax
Axis for the function to be applied on.
Exclude NA/null values when computing the result.
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar.
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
Additional keyword arguments to be passed to the function.
See also
Series.sum
Return the sum.
Series.min
Return the minimum.
Series.max
Return the maximum.
Series.idxmin
Return the index of the minimum.
Series.idxmax
Return the index of the maximum.
DataFrame.sum
Return the sum over the requested axis.
DataFrame.min
Return the minimum over the requested axis.
DataFrame.max
Return the maximum over the requested axis.
DataFrame.idxmin
Return the index of the minimum over the requested axis.
DataFrame.idxmax
Return the index of the maximum over the requested axis.
Examples
>>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64
>>> s.max() 8
Max using level names, as well as indices.
>>> s.max(level='blooded') blooded warm 4 cold 8 Name: legs, dtype: int64
>>> s.max(level=0) blooded warm 4 cold 8 Name: legs, dtype: int64