Series.
__array__
Return the values as a NumPy array.
Users should not call this directly. Rather, it is invoked by numpy.array() and numpy.asarray().
numpy.array()
numpy.asarray()
The dtype to use for the resulting NumPy array. By default, the dtype is inferred from the data.
The values in the series converted to a numpy.ndarray with the specified dtype.
numpy.ndarray
See also
array
Create a new array from data.
Series.array
Zero-copy view to the array backing the Series.
Series.to_numpy
Series method for similar behavior.
Examples
>>> ser = pd.Series([1, 2, 3]) >>> np.asarray(ser) array([1, 2, 3])
For timezone-aware data, the timezones may be retained with dtype='object'
dtype='object'
>>> tzser = pd.Series(pd.date_range('2000', periods=2, tz="CET")) >>> np.asarray(tzser, dtype="object") array([Timestamp('2000-01-01 00:00:00+0100', tz='CET', freq='D'), Timestamp('2000-01-02 00:00:00+0100', tz='CET', freq='D')], dtype=object)
Or the values may be localized to UTC and the tzinfo discarded with dtype='datetime64[ns]'
dtype='datetime64[ns]'
>>> np.asarray(tzser, dtype="datetime64[ns]") array(['1999-12-31T23:00:00.000000000', ...], dtype='datetime64[ns]')