卷积速查表
作者Lou Xiao创建时间2020-09-18 18:48:00更新时间2022-11-01 18:58:00
深度学习(deep learning)中,常常用到2D卷积,尺寸计算就是一个问题,本文列出常用的2D卷积参数。
事实上只有输入与输出尺寸等于1:1是通用的,其它的比例都和input size相关的,故只列出比例是1:1的卷积参数据。
输入等于输出
注:dilation=1
kernel size | stride | padding |
---|---|---|
1 | 1 | 0 |
3 | 1 | 1 |
5 | 1 | 2 |
7 | 1 | 3 |
9 | 1 | 4 |
11 | 1 | 5 |
13 | 1 | 6 |
15 | 1 | 7 |
17 | 1 | 8 |
19 | 1 | 9 |
21 | 1 | 10 |
23 | 1 | 11 |
25 | 1 | 12 |
27 | 1 | 13 |
29 | 1 | 14 |
31 | 1 | 15 |
33 | 1 | 16 |
35 | 1 | 17 |
37 | 1 | 18 |
39 | 1 | 19 |
41 | 1 | 20 |
43 | 1 | 21 |
45 | 1 | 22 |
47 | 1 | 23 |
49 | 1 | 24 |
51 | 1 | 25 |
53 | 1 | 26 |
55 | 1 | 27 |
57 | 1 | 28 |
59 | 1 | 29 |
61 | 1 | 30 |
63 | 1 | 31 |
65 | 1 | 32 |
67 | 1 | 33 |
69 | 1 | 34 |
71 | 1 | 35 |
73 | 1 | 36 |
75 | 1 | 37 |
77 | 1 | 38 |
79 | 1 | 39 |
81 | 1 | 40 |
83 | 1 | 41 |
85 | 1 | 42 |
87 | 1 | 43 |
89 | 1 | 44 |
91 | 1 | 45 |
93 | 1 | 46 |
95 | 1 | 47 |
97 | 1 | 48 |
99 | 1 | 49 |
101 | 1 | 50 |
103 | 1 | 51 |
105 | 1 | 52 |
107 | 1 | 53 |
109 | 1 | 54 |
111 | 1 | 55 |
113 | 1 | 56 |
115 | 1 | 57 |
117 | 1 | 58 |
119 | 1 | 59 |
121 | 1 | 60 |
123 | 1 | 61 |
125 | 1 | 62 |
127 | 1 | 63 |
129 | 1 | 64 |
131 | 1 | 65 |
133 | 1 | 66 |
135 | 1 | 67 |
137 | 1 | 68 |
139 | 1 | 69 |
141 | 1 | 70 |
143 | 1 | 71 |
145 | 1 | 72 |
147 | 1 | 73 |
149 | 1 | 74 |
151 | 1 | 75 |
153 | 1 | 76 |
155 | 1 | 77 |
157 | 1 | 78 |
159 | 1 | 79 |
161 | 1 | 80 |
163 | 1 | 81 |
165 | 1 | 82 |
167 | 1 | 83 |
169 | 1 | 84 |
171 | 1 | 85 |
173 | 1 | 86 |
175 | 1 | 87 |
177 | 1 | 88 |
179 | 1 | 89 |
181 | 1 | 90 |
183 | 1 | 91 |
185 | 1 | 92 |
187 | 1 | 93 |
189 | 1 | 94 |
191 | 1 | 95 |
193 | 1 | 96 |
195 | 1 | 97 |
197 | 1 | 98 |
199 | 1 | 99 |
参考
文章目录