dataclasses
--- 数据类¶
这个模块提供了一个装饰器和一些函数,用于自动为用户自定义的类添加生成的 special method 例如 __init__()
和 __repr__()
。 它的初始描述见 PEP 557。
在这些生成的方法中使用的成员变量是使用 PEP 526 类型标注来定义的。例如以下代码:
from dataclasses import dataclass
@dataclass
class InventoryItem:
"""Class for keeping track of an item in inventory."""
name: str
unit_price: float
quantity_on_hand: int = 0
def total_cost(self) -> float:
return self.unit_price * self.quantity_on_hand
除其他内容以外,还将添加如下所示的 __init__()
:
def __init__(self, name: str, unit_price: float, quantity_on_hand: int = 0):
self.name = name
self.unit_price = unit_price
self.quantity_on_hand = quantity_on_hand
请注意,此方法会自动添加到类中:而不是在如上所示的 InventoryItem
定义中被直接指定。
在 3.7 版本加入.
模块内容¶
- @dataclasses.dataclass(*, init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False, match_args=True, kw_only=False, slots=False, weakref_slot=False)¶
这个函数是 decorator ,用于将生成的 special method 添加到类中,如下所述。
dataclass()
装饰器会检查类以查找field
——field
被定义为具有 类型标注 的类变量。除了下面描述的两个例外,在dataclass()
中没有什么东西会去检查这些变量标注成了何种类型。这些字段在所有生成的方法中的顺序,都是它们在类定义中出现的顺序。
dataclass()
装饰器将向类中添加如下的各种 dunder 方法。如果所添加的方法已存在于类中,则行为将取决于下面所列出的形参。该装饰器会返回调用它的类;不会创建新的类。如果
dataclass()
仅用作没有参数的简单装饰器,它将使用它的函数签名中的默认值。也就是说,这三种dataclass()
用法是等价的:@dataclass class C: ... @dataclass() class C: ... @dataclass(init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False, match_args=True, kw_only=False, slots=False, weakref_slot=False) class C: ...
dataclass()
的参数有:init
: 如为真值(默认),将生成一个__init__()
方法。如果该类已经定义了
__init__()
,则忽略此形参。repr
: 如果为真值(默认),将生成一个__repr__()
方法。 生成的 repr 字符串将带有类名及每个字符的名称和 repr,并按它们在类中定义的顺序排列。 不包括被标记为从 repr 排除的字段。 例如:InventoryItem(name='widget', unit_price=3.0, quantity_on_hand=10)
。如果该类已经定义了
__repr__()
,则忽略此形参。eq
: 如果为真值(默认),将生成__eq__()
方法。 此方法将把类当作由其字段组成的元组那样按顺序进行比较。 要比较的两个实例必须是相同的类型。如果该类已经定义了
__eq__()
,则忽略此形参。order
: 如果为真值 (默认为False
),将生成__lt__()
,__le__()
,__gt__()
和__ge__()
方法。 这些方法将把类当作由其字段组成的元组那样按顺序进行比较。 要比较的两个实例必须是相同的类型。 如果order
为真值并且eq
为假值,则会引发ValueError
。如果该类已经定义了
__lt__()
,__le__()
,__gt__()
或者__ge__()
中的任意一个,则会引发TypeError
。unsafe_hash
: 如果为False
(默认值),则会根据eq
和frozen
的设置情况生成__hash__()
方法。__hash__()
将由内置的hash()
使用,并会在对象被添加到可哈希的多项集如字典和集合时被调用。 具有__hash__()
意味着类的实例是不可变对象。 可变性是一个复杂的特性,它依赖于程序员的意图,__eq__()
的存在和行为方式,以及dataclass()
装饰器中eq
和frozen
旗标的值。在默认情况下,
dataclass()
不会隐式地添加__hash__()
方法,除非这样做是安全的。 它也不会添加或更改现有的显式定义的__hash__()
方法。 设置类属性__hash__ = None
对 Python 来说有特别的含义,如__hash__()
文档所描述的。如果
__hash__()
没有被显式地定义,或者如果它被设为None
,则dataclass()
可能 会添加一个隐式的__hash__()
方法。 虽然并不推荐,但你可以设置unsafe_hash=True
来强制dataclass()
创建一个__hash__()
方法。 如果你的类在逻辑上不可变但仍然可被修改那么可能就是这种情况。 这是一个特殊应用场景并且应当被谨慎考虑。以下是隐式创建
__hash__()
方法的规则。 请注意你不能在你的数据类中即定义显式的__hash__()
方法又设置unsafe_hash=True
;这会导致TypeError
。如果
eq
和frozen
都为真值,则dataclass()
将默认为你生成一个__hash__()
方法。 如果eq
为真值且frozen
为假值,则__hash__()
将被设为None
,以标记其为不可哈希的(因为它是可变对象)。 如果eq
为假值,则__hash__()
将保持不变,这意味着将使用超类的__hash__()
方法(如果超类是object
,这意味着它将回退为基于 id 的哈希)。frozen
: 如果为真值 (默认为False
),则对字段赋值将引发异常。 这模拟了只读的冻结实例。 如果在类中定义了__setattr__()
或__delattr__()
,则将引发TypeError
。 参见下文的讨论。match_args
: 如果为真值 (默认为True
),则将根据传给已生成的__init__()
方法的形参列表来创建__match_args__
元组 (即使没有生成__init__()
,见上文)。 如果为假值,或者如果__match_args__
已在类中定义,则不会生成__match_args__
。
在 3.10 版本加入.
kw_only
: 如果为真值 (默认为False
),则所有字段都将被标记为仅限关键字字段。 如果一个字段被标记为仅限关键字字段,则唯一的影响是由仅限关键字字段生成的__init__()
的对应形参在__init__()
被调用时必须以关键字形式指定。 而 dataclass 的任何其它行为都不会受影响。 详情参见 parameter 术语表条目。 另请参见KW_ONLY
一节。
在 3.10 版本加入.
weakref_slot
:如果为真值(默认为False
),则添加一个名为 “__weakref__” 的槽位,这是使得一个实例可以被弱引用所必需的。指定weakref_slot=True
而不同时指定slots=True
将会导致错误。
在 3.11 版本加入.
可以用普通的 Python 语法为各个
field
指定默认值:@dataclass class C: a: int # 'a' has no default value b: int = 0 # assign a default value for 'b'
在这个例子中,
a
和b
都将被包括在所添加的__init__()
方法中,该方法将被定义为:def __init__(self, a: int, b: int = 0):
如果在具有默认值的字段之后存在没有默认值的字段,将会引发
TypeError
。无论此情况是发生在单个类中还是作为类继承的结果,都是如此。
- dataclasses.field(*, default=MISSING, default_factory=MISSING, init=True, repr=True, hash=None, compare=True, metadata=None, kw_only=MISSING)¶
大多数时候,对于简单常见的用途,前述的功能已经足够了。而有些功能需要字段提供额外的信息来启用。为了满足这种对附加信息的需求,你可以通过调用提供的
field()
函数来替换字段默认值。例如:@dataclass class C: mylist: list[int] = field(default_factory=list) c = C() c.mylist += [1, 2, 3]
如上所示,
MISSING
值是一个哨兵对象,用于检测一些形参是否由用户提供。使用它是因为None
对于一些形参来说是有效的用户值。任何代码都不应该直接使用MISSING
值。field()
的形参有:default
:如果提供,这将是该字段的默认值。设计这个形参是因为field()
调用将会占据原来用来提供默认值的位置。default_factory
:如果提供,它必须是一个需要零个参数的可调用对象,当该字段需要一个默认值时,它将被调用。这能解决当默认值是可变对象时会带来的问题,如下所述。同时指定default
和default_factory
将产生错误。init
: 如果为真值(默认),则该字段将作为一个形参被包括在所生成的__init__()
方法中。repr
: 如果为真值(默认),则该字段将被包括在所生成的__repr__()
方法返回的字符串中。hash
: 这可以是一个布尔值或为None
。 如果为真值,则此字段将被包括在所生成的__hash__()
方法中。 如果为None
(默认),则将使用compare
的值:这通常是预期的行为。 一个字段如果被用于比较那么就应当在哈希时考虑到它。 不建议将该值设为None
以外的任何其他对象。设置
hash=False
但compare=True
的一个合理情况是,一个计算哈希值的代价很高的字段是检验等价性需要的,且还有其他字段可以用于计算类型的哈希值。可以从哈希值中排除该字段,但仍令它用于比较。compare
: 如果为真值(默认),则该字段将被包括在所生成的相等性和大小比较方法中 (__eq__()
,__gt__()
等等)。metadata
:可以是映射或 None。None 被视为一个空的字典。这个值将被包装在MappingProxyType()
中,使其只读,并暴露在Field
对象上。数据类不使用它——它是作为第三方扩展机制提供的。多个第三方可以各自拥有自己的键,以用作元数据中的命名空间。kw_only
: 如果为真值,则该字段将被标记为仅限关键字字段。 这将在计算所生成的__init__()
方法的形参时被使用。
在 3.10 版本加入.
如果通过调用
field()
指定字段的默认值,则该字段对应的类属性的值将最终被替换为指定的default
值。如果没有提供default
,那么将删除该字段对应的类属性。目的是在dataclass()
装饰器运行之后,类属性将包含字段的默认值,和直接指定了默认值一样。例如,在运行如下代码之后:@dataclass class C: x: int y: int = field(repr=False) z: int = field(repr=False, default=10) t: int = 20
类属性
C.z
将是10
,类属性C.t
将是20
,类属性C.x
和C.y
将不设置。
- class dataclasses.Field¶
Field
对象描述每个已定义的字段。这些对象在内部被创建,并由fields()
模块级方法返回(见下)。用户永远不应该直接实例化Field
对象。它的下列属性的含义是由文档规定的:name
:字段的名称。type
:字段的类型。default
,default_factory
,init
,repr
,hash
,compare
,metadata
和kw_only
具有与field()
函数中对应参数相同的含义和值。
可能存在其他属性,但它们是私有的。用户不应检查或依赖于这些属性。
- dataclasses.fields(class_or_instance)¶
返回一个能描述此数据类所包含的字段的元组,元组的每一项都是
Field
对象。接受数据类或数据类的实例。如果没有传递一个数据类或实例将引发TypeError
。不返回ClassVar
或InitVar
等伪字段。
- dataclasses.asdict(obj, *, dict_factory=dict)¶
将数据类
obj
转换为一个字典(使用工厂函数dict_factory
)。每个数据类被转换为以name: value
键值对来储存其字段的字典。数据类、字典、列表和元组的内容会被递归地访问。其它对象用copy.deepcopy()
来复制。在嵌套的数据类上使用
asdict()
的例子:@dataclass class Point: x: int y: int @dataclass class C: mylist: list[Point] p = Point(10, 20) assert asdict(p) == {'x': 10, 'y': 20} c = C([Point(0, 0), Point(10, 4)]) assert asdict(c) == {'mylist': [{'x': 0, 'y': 0}, {'x': 10, 'y': 4}]}
要创建一个浅拷贝,可以使用以下的变通方法:
dict((field.name, getattr(obj, field.name)) for field in fields(obj))
- dataclasses.astuple(obj, *, tuple_factory=tuple)¶
将数据类
obj
转换为一个元组(使用工厂函数tuple_factory
)。每个数据类被转换为其字段的值的元组。数据类、字典、列表和元组的内容会被递归地访问。其它对象用copy.deepcopy()
来复制。继续前一个例子:
assert astuple(p) == (10, 20) assert astuple(c) == ([(0, 0), (10, 4)],)
要创建一个浅拷贝,可以使用以下的变通方法:
tuple(getattr(obj, field.name) for field in dataclasses.fields(obj))
- dataclasses.make_dataclass(cls_name, fields, *, bases=(), namespace=None, init=True, repr=True, eq=True, order=False, unsafe_hash=False, frozen=False, match_args=True, kw_only=False, slots=False, weakref_slot=False)¶
创建一个新数据类,名为
cls_name
,包含的字段为fields
,基类为bases
,并且用namespace
指定的命名空间初始化。fields
是一个可迭代对象,其每一个元素的形式都可以取name
,(name, type)
或(name, type, Field)
中的一种。若只提供name
,type
则为typing.Any
。后面这些参数:init
、repr
、eq
、order
、unsafe_hash
、frozen
、match_args
、kw_only
、slots
、weakref_slot
全都与dataclass()
的同名参数作用相同。此函数不是必需的,因为任何用于创建带有
__annotations__
的新类的 Python 机制都可以进一步用dataclass()
函数将创建的类转换为数据类。提供此函数是为了方便。例如:C = make_dataclass('C', [('x', int), 'y', ('z', int, field(default=5))], namespace={'add_one': lambda self: self.x + 1})
等价于:
@dataclass class C: x: int y: 'typing.Any' z: int = 5 def add_one(self): return self.x + 1
- dataclasses.replace(obj, /, **changes)¶
创建一个与
obj
类型相同的新对象,将字段替换为changes
里的值。如果obj
不是数据类,引发TypeError
。如果changes
里的值没有指定要替换的字段名,引发TypeError
。The newly returned object is created by calling the
__init__()
method of the dataclass. This ensures that __post_init__, if present, is also called.Init-only variables without default values, if any exist, must be specified on the call to
replace()
so that they can be passed to__init__()
and __post_init__.changes
试图为任何定义为init=False
的字段赋值,会引发ValueError
。Be forewarned about how
init=False
fields work during a call toreplace()
. They are not copied from the source object, but rather are initialized in __post_init__, if they're initialized at all. It is expected thatinit=False
fields will be rarely and judiciously used. If they are used, it might be wise to have alternate class constructors, or perhaps a customreplace()
(or similarly named) method which handles instance copying.
- dataclasses.is_dataclass(obj)¶
如果其形参为数据类,或其实例,返回
True
,否则返回False
。如果你需要知道一个类是否是一个数据类的实例(而不是一个数据类本身),那么再添加一个
not isinstance(obj, type)
检查:def is_dataclass_instance(obj): return is_dataclass(obj) and not isinstance(obj, type)
- dataclasses.MISSING¶
一个指明“没有提供 default 或 default_factory”的监视值。
- dataclasses.KW_ONLY¶
一个用作类型标注的监视值。 任何在伪字段之后的类型为
KW_ONLY
的字段会被标记为仅限关键字字段。 请注意在其他情况下KW_ONLY
类型的伪字段会被完全忽略。 这包括此类字段的名称。 根据惯例,名称_
会被用作KW_ONLY
字段。 仅限关键字字段指明当类被实例化时__init__()
形参必须以关键字形式来指定。在这个例子中,字段
y
和z
将被标记为仅限关键字字段:@dataclass class Point: x: float _: KW_ONLY y: float z: float p = Point(0, y=1.5, z=2.0)
在单个数据类中,指定一个以上
KW_ONLY
类型的字段将导致错误。在 3.10 版本加入.
- exception dataclasses.FrozenInstanceError¶
在定义时设置了
frozen=True
的类上调用隐式定义的__setattr__()
或__delattr__()
时引发。 这是AttributeError
的一个子类。
初始化后处理¶
The generated __init__()
code will call a method named
__post_init__()
, if __post_init__()
is defined on the
class. It will normally be called as self.__post_init__()
.
However, if any InitVar
fields are defined, they will also be
passed to __post_init__()
in the order they were defined in the
class. If no __init__()
method is generated, then
__post_init__()
will not automatically be called.
在其他用途中,这允许初始化依赖于一个或多个其他字段的字段值。例如:
@dataclass
class C:
a: float
b: float
c: float = field(init=False)
def __post_init__(self):
self.c = self.a + self.b
The __init__()
method generated by dataclass()
does not call base
class __init__()
methods. If the base class has an __init__()
method
that has to be called, it is common to call this method in a
__post_init__()
method:
class Rectangle:
def __init__(self, height, width):
self.height = height
self.width = width
@dataclass
class Square(Rectangle):
side: float
def __post_init__(self):
super().__init__(self.side, self.side)
但是,请注意一般来说 dataclass 生成的 __init__()
方法不需要被调用,因为派生的 dataclass 将负责初始化任何本身为 dataclass 的基类的所有字段。
See the section below on init-only variables for ways to pass
parameters to __post_init__()
. Also see the warning about how
replace()
handles init=False
fields.
类变量¶
在 dataclass()
会实际检查字段类型的少数几个地方之一是确定字符是否为如 PEP 526 所定义的类变量。 它通过检查字段的类型是否为 typing.ClassVar
来实现这一点。 如果一个字段是 ClassVar
,它将被排除在考虑范围之外并被数据类机制所忽略。 这样的 ClassVar
伪字段将不会被模块层级的 fields()
函数返回。
仅初始化变量¶
Another place where dataclass()
inspects a type annotation is to
determine if a field is an init-only variable. It does this by seeing
if the type of a field is of type dataclasses.InitVar
. If a field
is an InitVar
, it is considered a pseudo-field called an init-only
field. As it is not a true field, it is not returned by the
module-level fields()
function. Init-only fields are added as
parameters to the generated __init__()
method, and are passed to
the optional __post_init__ method. They are not otherwise used
by dataclasses.
例如,假设在创建类时没有为某个字段提供值,初始化时将从数据库中取值:
@dataclass
class C:
i: int
j: int | None = None
database: InitVar[DatabaseType | None] = None
def __post_init__(self, database):
if self.j is None and database is not None:
self.j = database.lookup('j')
c = C(10, database=my_database)
冻结的实例¶
不可能创建真正不可变的 Python 对象。 但是,通过将 frozen=True
传递给 dataclass()
装饰器,你可以模拟出不可变性。 在这种情况下,dataclass 将向类添加 __setattr__()
和 __delattr__()
方法。 当被发起调用时这些方法将会引发 FrozenInstanceError
。
在使用 frozen=True
时会有微小的性能损失: __init__()
不能使用简单赋值来初始化字段,而必须使用 object.__setattr__()
。
继承¶
当数据类由 dataclass()
装饰器创建时,它会按反向 MRO 顺序(即,从 object
开始)查看它的所有基类,并且将找到的每个数据类的字段添加到一个有序映射中。添加完所有基类字段后,它会将自己的字段添加到这个有序映射中。所有生成的方法都将使用这个有序映射。字段会遵守它们被插入的顺序,因此派生类会重写基类。一个例子:
@dataclass
class Base:
x: Any = 15.0
y: int = 0
@dataclass
class C(Base):
z: int = 10
x: int = 15
最后的字段列表依次是 x
、 y
、 z
。 x
的最终类型是 int
,如类 C
中所指定的那样。
为 C
生成的 __init__()
方法看起来像是这样:
def __init__(self, x: int = 15, y: int = 0, z: int = 10):
__init__()
中仅限关键字形参的重新排序¶
在计算出 __init__()
所需要的形参之后,任何仅限关键字形参会被移至所有常规(非仅限关键字)形参的后面。 这是 Python 中实现仅限关键字形参所要求的:它们必须位于非仅限关键字形参之后。
在这个例子中,Base.y
, Base.w
, and D.t
是仅限关键字字段,而 Base.x
和 D.z
是常规字段:
@dataclass
class Base:
x: Any = 15.0
_: KW_ONLY
y: int = 0
w: int = 1
@dataclass
class D(Base):
z: int = 10
t: int = field(kw_only=True, default=0)
为 D
生成的 __init__()
方法看起来像是这样:
def __init__(self, x: Any = 15.0, z: int = 10, *, y: int = 0, w: int = 1, t: int = 0):
请注意形参原来在字段列表中出现的位置已被重新排序:前面是来自常规字段的形参而后面是来自仅限关键字字段的形参。
仅限关键字形参的相对顺序会在重新排序的 __init__()
形参列表中继续保持。
默认工厂函数¶
如果一个 field()
指定了一个 default_factory
,当需要该字段的默认值时,将使用零参数调用它。例如,要创建列表的新实例,请使用:
mylist: list = field(default_factory=list)
如果一个字段被排除在 __init__()
之外 (使用 init=False
) 但该字段同样也指定了 default_factory
,则默认的工厂函数将始终从生成的 __init__()
函数中被调用。 发生这种情况是因为没有其它方法能为字段提供初始值。
可变的默认值¶
Python 在类属性中存储默认成员变量值。思考这个例子,不使用数据类:
class C:
x = []
def add(self, element):
self.x.append(element)
o1 = C()
o2 = C()
o1.add(1)
o2.add(2)
assert o1.x == [1, 2]
assert o1.x is o2.x
请注意,类 C
的两个实例共享相同的类变量 x
,如预期的那样。
使用数据类,如果 此代码有效:
@dataclass
class D:
x: list = [] # This code raises ValueError
def add(self, element):
self.x += element
它生成的代码类似于:
class D:
x = []
def __init__(self, x=x):
self.x = x
def add(self, element):
self.x += element
assert D().x is D().x
这具有与使用 C
类的原始示例相同的问题。 也就是说,当创建类实例的时候如果 D
类的两个实例没有为 x
指定值则将共享同一个 x
的副本。 因为数据类只是使用普通的 Python 类创建方式所心它们也会共享此行为。 数据类没有任何通用方式来检测这种情况。 相反地,dataclass()
装饰器在检测到不可哈希的默认形参时将会引发 ValueError
。 这一行为假定如果一个值是不可哈希的,则它就是可变对象。 这是一个部分解决方案,但它确实能防止许多常见错误。
使用默认工厂函数是一种创建可变类型新实例的方法,并将其作为字段的默认值:
@dataclass
class D:
x: list = field(default_factory=list)
assert D().x is not D().x
在 3.11 版本发生变更: 现在不再是寻找并阻止使用类型为 list
, dict
或 set
的对象,而是不允许使用不可哈希的对象作为默认值。 就是将不可哈希性当作是不可变性的等价物。
字段标注描述器类型¶
当字段被 描述器对象 赋值为默认值时会遵循以下行为:
字段的值被传递到数据类的
__init__
方法时,会传递给描述器的__set__
方法,而不会覆盖掉描述器对象。相似的是,当我们获取或设置字段的值时,不会覆盖或返回描述器对象,而是会调用描述器的
__get__
或__set__
方法后返回。检测字段是否存在默认值时,
dataclasses``会通过类方法的形式去调用描述器的``__get__``方法(即为``descriptor.__get__(obj=None, type=cls)
)。如果描述器有返回值,则返回值为字段的默认值,若调用描述器时抛出AttributeError
错误,则该字段无默认值。
class IntConversionDescriptor:
def __init__(self, *, default):
self._default = default
def __set_name__(self, owner, name):
self._name = "_" + name
def __get__(self, obj, type):
if obj is None:
return self._default
return getattr(obj, self._name, self._default)
def __set__(self, obj, value):
setattr(obj, self._name, int(value))
@dataclass
class InventoryItem:
quantity_on_hand: IntConversionDescriptor = IntConversionDescriptor(default=100)
i = InventoryItem()
print(i.quantity_on_hand) # 100
i.quantity_on_hand = 2.5 # calls __set__ with 2.5
print(i.quantity_on_hand) # 2
如果一个字段被描述器标注类型,但默认值并不是描述器对象,那么该字段就只能像平常的字段一样工作。