pandas.core.window.rolling.Rolling.quantile#
- Rolling.quantile(quantile, interpolation='linear', numeric_only=False, **kwargs)[source]#
Calculate the rolling quantile.
- Parameters
- quantilefloat
Quantile to compute. 0 <= quantile <= 1.
- interpolation{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}
This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j:
linear: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j.
lower: i.
higher: j.
nearest: i or j whichever is nearest.
midpoint: (i + j) / 2.
- numeric_onlybool, default False
Include only float, int, boolean columns.
New in version 1.5.0.
- **kwargs
For NumPy compatibility and will not have an effect on the result.
Deprecated since version 1.5.0.
- Returns
- Series or DataFrame
Return type is the same as the original object with
np.float64
dtype.
See also
pandas.Series.rolling
Calling rolling with Series data.
pandas.DataFrame.rolling
Calling rolling with DataFrames.
pandas.Series.quantile
Aggregating quantile for Series.
pandas.DataFrame.quantile
Aggregating quantile for DataFrame.
Examples
>>> s = pd.Series([1, 2, 3, 4]) >>> s.rolling(2).quantile(.4, interpolation='lower') 0 NaN 1 1.0 2 2.0 3 3.0 dtype: float64
>>> s.rolling(2).quantile(.4, interpolation='midpoint') 0 NaN 1 1.5 2 2.5 3 3.5 dtype: float64