pandas.DataFrame.loc¶
- property DataFrame.loc¶
Access a group of rows and columns by label(s) or a boolean array.
.loc[]
is primarily label based, but may also be used with a boolean array.Allowed inputs are:
A single label, e.g.
5
or'a'
, (note that5
is interpreted as a label of the index, and never as an integer position along the index).A list or array of labels, e.g.
['a', 'b', 'c']
.A slice object with labels, e.g.
'a':'f'
.Warning
Note that contrary to usual python slices, both the start and the stop are included
A boolean array of the same length as the axis being sliced, e.g.
[True, False, True]
.An alignable boolean Series. The index of the key will be aligned before masking.
An alignable Index. The Index of the returned selection will be the input.
A
callable
function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above)
See more at Selection by Label.
- Raises
- KeyError
If any items are not found.
- IndexingError
If an indexed key is passed and its index is unalignable to the frame index.
See also
DataFrame.at
Access a single value for a row/column label pair.
DataFrame.iloc
Access group of rows and columns by integer position(s).
DataFrame.xs
Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.
Series.loc
Access group of values using labels.
Examples
Getting values
>>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=['cobra', 'viper', 'sidewinder'], ... columns=['max_speed', 'shield']) >>> df max_speed shield cobra 1 2 viper 4 5 sidewinder 7 8
Single label. Note this returns the row as a Series.
>>> df.loc['viper'] max_speed 4 shield 5 Name: viper, dtype: int64
List of labels. Note using
[[]]
returns a DataFrame.>>> df.loc[['viper', 'sidewinder']] max_speed shield viper 4 5 sidewinder 7 8
Single label for row and column
>>> df.loc['cobra', 'shield'] 2
Slice with labels for row and single label for column. As mentioned above, note that both the start and stop of the slice are included.
>>> df.loc['cobra':'viper', 'max_speed'] cobra 1 viper 4 Name: max_speed, dtype: int64
Boolean list with the same length as the row axis
>>> df.loc[[False, False, True]] max_speed shield sidewinder 7 8
Alignable boolean Series:
>>> df.loc[pd.Series([False, True, False], ... index=['viper', 'sidewinder', 'cobra'])] max_speed shield sidewinder 7 8
Index (same behavior as
df.reindex
)>>> df.loc[pd.Index(["cobra", "viper"], name="foo")] max_speed shield foo cobra 1 2 viper 4 5
Conditional that returns a boolean Series
>>> df.loc[df['shield'] > 6] max_speed shield sidewinder 7 8
Conditional that returns a boolean Series with column labels specified
>>> df.loc[df['shield'] > 6, ['max_speed']] max_speed sidewinder 7
Callable that returns a boolean Series
>>> df.loc[lambda df: df['shield'] == 8] max_speed shield sidewinder 7 8
Setting values
Set value for all items matching the list of labels
>>> df.loc[['viper', 'sidewinder'], ['shield']] = 50 >>> df max_speed shield cobra 1 2 viper 4 50 sidewinder 7 50
Set value for an entire row
>>> df.loc['cobra'] = 10 >>> df max_speed shield cobra 10 10 viper 4 50 sidewinder 7 50
Set value for an entire column
>>> df.loc[:, 'max_speed'] = 30 >>> df max_speed shield cobra 30 10 viper 30 50 sidewinder 30 50
Set value for rows matching callable condition
>>> df.loc[df['shield'] > 35] = 0 >>> df max_speed shield cobra 30 10 viper 0 0 sidewinder 0 0
Getting values on a DataFrame with an index that has integer labels
Another example using integers for the index
>>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=[7, 8, 9], columns=['max_speed', 'shield']) >>> df max_speed shield 7 1 2 8 4 5 9 7 8
Slice with integer labels for rows. As mentioned above, note that both the start and stop of the slice are included.
>>> df.loc[7:9] max_speed shield 7 1 2 8 4 5 9 7 8
Getting values with a MultiIndex
A number of examples using a DataFrame with a MultiIndex
>>> tuples = [ ... ('cobra', 'mark i'), ('cobra', 'mark ii'), ... ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'), ... ('viper', 'mark ii'), ('viper', 'mark iii') ... ] >>> index = pd.MultiIndex.from_tuples(tuples) >>> values = [[12, 2], [0, 4], [10, 20], ... [1, 4], [7, 1], [16, 36]] >>> df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index) >>> df max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36
Single label. Note this returns a DataFrame with a single index.
>>> df.loc['cobra'] max_speed shield mark i 12 2 mark ii 0 4
Single index tuple. Note this returns a Series.
>>> df.loc[('cobra', 'mark ii')] max_speed 0 shield 4 Name: (cobra, mark ii), dtype: int64
Single label for row and column. Similar to passing in a tuple, this returns a Series.
>>> df.loc['cobra', 'mark i'] max_speed 12 shield 2 Name: (cobra, mark i), dtype: int64
Single tuple. Note using
[[]]
returns a DataFrame.>>> df.loc[[('cobra', 'mark ii')]] max_speed shield cobra mark ii 0 4
Single tuple for the index with a single label for the column
>>> df.loc[('cobra', 'mark i'), 'shield'] 2
Slice from index tuple to single label
>>> df.loc[('cobra', 'mark i'):'viper'] max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36
Slice from index tuple to index tuple
>>> df.loc[('cobra', 'mark i'):('viper', 'mark ii')] max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1