SeriesGroupBy.
unique
Return unique values of Series object.
Uniques are returned in order of appearance. Hash table-based unique, therefore does NOT sort.
The unique values returned as a NumPy array. See Notes.
See also
Top-level unique method for any 1-d array-like object.
Index.unique
Return Index with unique values from an Index object.
Notes
Returns the unique values as a NumPy array. In case of an extension-array backed Series, a new ExtensionArray of that type with just the unique values is returned. This includes
ExtensionArray
Categorical Period Datetime with Timezone Interval Sparse IntegerNA
Categorical
Period
Datetime with Timezone
Interval
Sparse
IntegerNA
See Examples section.
Examples
>>> pd.Series([2, 1, 3, 3], name='A').unique() array([2, 1, 3])
>>> pd.Series([pd.Timestamp('2016-01-01') for _ in range(3)]).unique() array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]')
>>> pd.Series([pd.Timestamp('2016-01-01', tz='US/Eastern') ... for _ in range(3)]).unique() <DatetimeArray> ['2016-01-01 00:00:00-05:00'] Length: 1, dtype: datetime64[ns, US/Eastern]
An unordered Categorical will return categories in the order of appearance.
>>> pd.Series(pd.Categorical(list('baabc'))).unique() ['b', 'a', 'c'] Categories (3, object): ['b', 'a', 'c']
An ordered Categorical preserves the category ordering.
>>> pd.Series(pd.Categorical(list('baabc'), categories=list('abc'), ... ordered=True)).unique() ['b', 'a', 'c'] Categories (3, object): ['a' < 'b' < 'c']