DataFrame.
lt
Get Less than of dataframe and other, element-wise (binary operator lt).
Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators.
Equivalent to ==, =!, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison.
Any single or multiple element data structure, or list-like object.
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).
Broadcast across a level, matching Index values on the passed MultiIndex level.
Result of the comparison.
See also
DataFrame.eq
Compare DataFrames for equality elementwise.
DataFrame.ne
Compare DataFrames for inequality elementwise.
DataFrame.le
Compare DataFrames for less than inequality or equality elementwise.
DataFrame.lt
Compare DataFrames for strictly less than inequality elementwise.
DataFrame.ge
Compare DataFrames for greater than inequality or equality elementwise.
DataFrame.gt
Compare DataFrames for strictly greater than inequality elementwise.
Notes
Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN).
Examples
>>> df = pd.DataFrame({'cost': [250, 150, 100], ... 'revenue': [100, 250, 300]}, ... index=['A', 'B', 'C']) >>> df cost revenue A 250 100 B 150 250 C 100 300
Comparison with a scalar, using either the operator or method:
>>> df == 100 cost revenue A False True B False False C True False
>>> df.eq(100) cost revenue A False True B False False C True False
When other is a Series, the columns of a DataFrame are aligned with the index of other and broadcast:
Series
>>> df != pd.Series([100, 250], index=["cost", "revenue"]) cost revenue A True True B True False C False True
Use the method to control the broadcast axis:
>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') cost revenue A True False B True True C True True D True True
When comparing to an arbitrary sequence, the number of columns must match the number elements in other:
>>> df == [250, 100] cost revenue A True True B False False C False False
Use the method to control the axis:
>>> df.eq([250, 250, 100], axis='index') cost revenue A True False B False True C True False
Compare to a DataFrame of different shape.
>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, ... index=['A', 'B', 'C', 'D']) >>> other revenue A 300 B 250 C 100 D 150
>>> df.gt(other) cost revenue A False False B False False C False True D False False
Compare to a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], ... 'revenue': [100, 250, 300, 200, 175, 225]}, ... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'], ... ['A', 'B', 'C', 'A', 'B', 'C']]) >>> df_multindex cost revenue Q1 A 250 100 B 150 250 C 100 300 Q2 A 150 200 B 300 175 C 220 225
>>> df.le(df_multindex, level=1) cost revenue Q1 A True True B True True C True True Q2 A False True B True False C True False