Styler.
pipe
Apply func(self, *args, **kwargs), and return the result.
func(self, *args, **kwargs)
New in version 0.24.0.
Function to apply to the Styler. Alternatively, a (callable, keyword) tuple where keyword is a string indicating the keyword of callable that expects the Styler.
(callable, keyword)
keyword
callable
Arguments passed to func.
A dictionary of keyword arguments passed into func.
func
The value returned by func.
See also
DataFrame.pipe
Analogous method for DataFrame.
Styler.apply
Apply a function row-wise, column-wise, or table-wise to modify the dataframe’s styling.
Notes
Like DataFrame.pipe(), this method can simplify the application of several user-defined functions to a styler. Instead of writing:
DataFrame.pipe()
f(g(df.style.set_precision(3), arg1=a), arg2=b, arg3=c)
users can write:
(df.style.set_precision(3) .pipe(g, arg1=a) .pipe(f, arg2=b, arg3=c))
In particular, this allows users to define functions that take a styler object, along with other parameters, and return the styler after making styling changes (such as calling Styler.apply() or Styler.set_properties()). Using .pipe, these user-defined style “transformations” can be interleaved with calls to the built-in Styler interface.
Styler.apply()
Styler.set_properties()
.pipe
Examples
>>> def format_conversion(styler): ... return (styler.set_properties(**{'text-align': 'right'}) ... .format({'conversion': '{:.1%}'}))
The user-defined format_conversion function above can be called within a sequence of other style modifications:
format_conversion
>>> df = pd.DataFrame({'trial': list(range(5)), ... 'conversion': [0.75, 0.85, np.nan, 0.7, 0.72]}) >>> (df.style ... .highlight_min(subset=['conversion'], color='yellow') ... .pipe(format_conversion) ... .set_caption("Results with minimum conversion highlighted."))