ma.
masked_values
Mask using floating point equality.
Return a MaskedArray, masked where the data in array x are approximately equal to value, determined using isclose. The default tolerances for masked_values are the same as those for isclose.
isclose
For integer types, exact equality is used, in the same way as masked_equal.
masked_equal
The fill_value is set to value and the mask is set to nomask if possible.
nomask
Array to mask.
Masking value.
Tolerance parameters passed on to isclose
Whether to return a copy of x.
Whether to collapse a mask full of False to nomask.
The result of masking x where approximately equal to value.
See also
masked_where
Mask where a condition is met.
Mask where equal to a given value (integers).
Examples
>>> import numpy.ma as ma >>> x = np.array([1, 1.1, 2, 1.1, 3]) >>> ma.masked_values(x, 1.1) masked_array(data=[1.0, --, 2.0, --, 3.0], mask=[False, True, False, True, False], fill_value=1.1)
Note that mask is set to nomask if possible.
>>> ma.masked_values(x, 1.5) masked_array(data=[1. , 1.1, 2. , 1.1, 3. ], mask=False, fill_value=1.5)
For integers, the fill value will be different in general to the result of masked_equal.
>>> x = np.arange(5) >>> x array([0, 1, 2, 3, 4]) >>> ma.masked_values(x, 2) masked_array(data=[0, 1, --, 3, 4], mask=[False, False, True, False, False], fill_value=2) >>> ma.masked_equal(x, 2) masked_array(data=[0, 1, --, 3, 4], mask=[False, False, True, False, False], fill_value=2)