numpy.
asanyarray
Convert the input to an ndarray, but pass ndarray subclasses through.
Input data, in any form that can be converted to an array. This includes scalars, lists, lists of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays.
By default, the data-type is inferred from the input data.
Memory layout. ‘A’ and ‘K’ depend on the order of input array a. ‘C’ row-major (C-style), ‘F’ column-major (Fortran-style) memory representation. ‘A’ (any) means ‘F’ if a is Fortran contiguous, ‘C’ otherwise ‘K’ (keep) preserve input order Defaults to ‘C’.
Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as like supports the __array_function__ protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.
like
__array_function__
Note
The like keyword is an experimental feature pending on acceptance of NEP 35.
New in version 1.20.0.
Array interpretation of a. If a is an ndarray or a subclass of ndarray, it is returned as-is and no copy is performed.
See also
asarray
Similar function which always returns ndarrays.
ascontiguousarray
Convert input to a contiguous array.
asfarray
Convert input to a floating point ndarray.
asfortranarray
Convert input to an ndarray with column-major memory order.
asarray_chkfinite
Similar function which checks input for NaNs and Infs.
fromiter
Create an array from an iterator.
fromfunction
Construct an array by executing a function on grid positions.
Examples
Convert a list into an array:
>>> a = [1, 2] >>> np.asanyarray(a) array([1, 2])
Instances of ndarray subclasses are passed through as-is:
ndarray
>>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray) >>> np.asanyarray(a) is a True