What’s New or Different¶
Warning
The Box-Muller method used to produce NumPy’s normals is no longer available
in Generator
. It is not possible to reproduce the exact random
values using Generator
for the normal distribution or any other
distribution that relies on the normal such as the Generator.gamma
or
Generator.standard_t
. If you require bitwise backward compatible
streams, use RandomState
, i.e., RandomState.gamma
or
RandomState.standard_t
.
Quick comparison of legacy mtrand to the new Generator
Feature |
Older Equivalent |
Notes |
|
||
|
|
Access the values in a BitGenerator,
convert them to Many other distributions are also supported. |
|
|
Use the |
And in more detail:
Simulate from the complex normal distribution (complex_normal)
The normal, exponential and gamma generators use 256-step Ziggurat methods which are 2-10 times faster than NumPy’s default implementation in
standard_normal
,standard_exponential
orstandard_gamma
.
In [1]: from numpy.random import Generator, PCG64
In [2]: import numpy.random
In [3]: rg = Generator(PCG64())
In [4]: %timeit -n 1 rg.standard_normal(100000)
...: %timeit -n 1 numpy.random.standard_normal(100000)
...:
1.08 ms +- 10.3 us per loop (mean +- std. dev. of 7 runs, 1 loop each)
2.08 ms +- 118 us per loop (mean +- std. dev. of 7 runs, 1 loop each)
In [5]: %timeit -n 1 rg.standard_exponential(100000)
...: %timeit -n 1 numpy.random.standard_exponential(100000)
...:
447 us +- 6.01 us per loop (mean +- std. dev. of 7 runs, 1 loop each)
1.45 ms +- 4.65 us per loop (mean +- std. dev. of 7 runs, 1 loop each)
In [6]: %timeit -n 1 rg.standard_gamma(3.0, 100000)
...: %timeit -n 1 numpy.random.standard_gamma(3.0, 100000)
...:
2.12 ms +- 12.7 us per loop (mean +- std. dev. of 7 runs, 1 loop each)
4.03 ms +- 62.9 us per loop (mean +- std. dev. of 7 runs, 1 loop each)
integers
is now the canonical way to generate integer random numbers from a discrete uniform distribution. Therand
andrandn
methods are only available through the legacyRandomState
. This replaces bothrandint
and the deprecatedrandom_integers
.The Box-Muller method used to produce NumPy’s normals is no longer available.
All bit generators can produce doubles, uint64s and uint32s via CTypes (
ctypes
) and CFFI (cffi
). This allows these bit generators to be used in numba.The bit generators can be used in downstream projects via Cython.
Optional
dtype
argument that acceptsnp.float32
ornp.float64
to produce either single or double prevision uniform random variables for select distributionsNormals (
standard_normal
)Standard Gammas (
standard_gamma
)Standard Exponentials (
standard_exponential
)
In [7]: rg = Generator(PCG64(0))
In [8]: rg.random(3, dtype='d')
Out[8]: array([0.63696169, 0.26978671, 0.04097352])
In [9]: rg.random(3, dtype='f')
Out[9]: array([0.07524014, 0.01652753, 0.17526722], dtype=float32)
Optional
out
argument that allows existing arrays to be filled for select distributionsUniforms (
random
)Normals (
standard_normal
)Standard Gammas (
standard_gamma
)Standard Exponentials (
standard_exponential
)
This allows multithreading to fill large arrays in chunks using suitable BitGenerators in parallel.
In [10]: existing = np.zeros(4)
In [11]: rg.random(out=existing[:2])
Out[11]: array([0.91275558, 0.60663578])
In [12]: print(existing)
[0.91275558 0.60663578 0. 0. ]
Optional
axis
argument for methods likechoice
,permutation
andshuffle
that controls which axis an operation is performed over for multi-dimensional arrays.
In [13]: rg = Generator(PCG64(123456789))
In [14]: a = np.arange(12).reshape((3, 4))
In [15]: a
Out[15]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
In [16]: rg.choice(a, axis=1, size=5)
Out[16]:
array([[ 3, 0, 2, 3, 1],
[ 7, 4, 6, 7, 5],
[11, 8, 10, 11, 9]])
In [17]: rg.shuffle(a, axis=1) # Shuffle in-place
In [18]: a
Out[18]:
array([[ 3, 1, 2, 0],
[ 7, 5, 6, 4],
[11, 9, 10, 8]])