Cython API for random
Typed versions of many of the Generator
and BitGenerator
methods as well as
the classes themselves can be accessed directly from Cython via
C API for random
Access to various distributions is available via Cython or C-wrapper libraries
like CFFI. All the functions accept a bitgen_t
as their first argument.
-
bitgen_t
The bitgen_t
holds the current state of the BitGenerator and
pointers to functions that return standard C types while advancing the
state.
struct bitgen:
void *state
npy_uint64 (*next_uint64)(void *st) nogil
uint32_t (*next_uint32)(void *st) nogil
double (*next_double)(void *st) nogil
npy_uint64 (*next_raw)(void *st) nogil
ctypedef bitgen bitgen_t
See Extending for examples of using these functions.
The functions are named with the following conventions:
“standard” refers to the reference values for any parameters. For instance
“standard_uniform” means a uniform distribution on the interval 0.0
to
1.0
“fill” functions will fill the provided out
with cnt
values.
The functions without “standard” in their name require additional parameters
to describe the distributions.
zig
in the name are based on a ziggurat lookup algorithm is used instead
of calculating the log
, which is significantly faster. The non-ziggurat
variants are used in corner cases and for legacy compatibility.
-
double
random_standard_uniform
(bitgen_t *bitgen_state)
-
void
random_standard_uniform_fill
(bitgen_t* bitgen_state, npy_intp cnt, double *out)
-
double
random_standard_exponential
(bitgen_t *bitgen_state)
-
void
random_standard_exponential_fill
(bitgen_t *bitgen_state, npy_intp cnt, double *out)
-
double
random_standard_normal
(bitgen_t* bitgen_state)
-
void
random_standard_normal_fill
(bitgen_t *bitgen_state, npy_intp count, double *out)
-
void
random_standard_normal_fill_f
(bitgen_t *bitgen_state, npy_intp count, float *out)
-
double
random_standard_gamma
(bitgen_t *bitgen_state, double shape)
-
float
random_standard_uniform_f
(bitgen_t *bitgen_state)
-
void
random_standard_uniform_fill_f
(bitgen_t* bitgen_state, npy_intp cnt, float *out)
-
float
random_standard_exponential_f
(bitgen_t *bitgen_state)
-
void
random_standard_exponential_fill_f
(bitgen_t *bitgen_state, npy_intp cnt, float *out)
-
float
random_standard_normal_f
(bitgen_t* bitgen_state)
-
float
random_standard_gamma_f
(bitgen_t *bitgen_state, float shape)
-
double
random_normal
(bitgen_t *bitgen_state, double loc, double scale)
-
double
random_gamma
(bitgen_t *bitgen_state, double shape, double scale)
-
float
random_gamma_f
(bitgen_t *bitgen_state, float shape, float scale)
-
double
random_exponential
(bitgen_t *bitgen_state, double scale)
-
double
random_uniform
(bitgen_t *bitgen_state, double lower, double range)
-
double
random_beta
(bitgen_t *bitgen_state, double a, double b)
-
double
random_chisquare
(bitgen_t *bitgen_state, double df)
-
double
random_f
(bitgen_t *bitgen_state, double dfnum, double dfden)
-
double
random_standard_cauchy
(bitgen_t *bitgen_state)
-
double
random_pareto
(bitgen_t *bitgen_state, double a)
-
double
random_weibull
(bitgen_t *bitgen_state, double a)
-
double
random_power
(bitgen_t *bitgen_state, double a)
-
double
random_laplace
(bitgen_t *bitgen_state, double loc, double scale)
-
double
random_gumbel
(bitgen_t *bitgen_state, double loc, double scale)
-
double
random_logistic
(bitgen_t *bitgen_state, double loc, double scale)
-
double
random_lognormal
(bitgen_t *bitgen_state, double mean, double sigma)
-
double
random_rayleigh
(bitgen_t *bitgen_state, double mode)
-
double
random_standard_t
(bitgen_t *bitgen_state, double df)
-
double
random_noncentral_chisquare
(bitgen_t *bitgen_state, double df, double nonc)
-
double
random_noncentral_f
(bitgen_t *bitgen_state, double dfnum, double dfden, double nonc)
-
double
random_wald
(bitgen_t *bitgen_state, double mean, double scale)
-
double
random_vonmises
(bitgen_t *bitgen_state, double mu, double kappa)
-
double
random_triangular
(bitgen_t *bitgen_state, double left, double mode, double right)
-
npy_int64
random_poisson
(bitgen_t *bitgen_state, double lam)
-
npy_int64
random_negative_binomial
(bitgen_t *bitgen_state, double n, double p)
-
binomial_t
typedef struct s_binomial_t {
int has_binomial; /* !=0: following parameters initialized for binomial */
double psave;
RAND_INT_TYPE nsave;
double r;
double q;
double fm;
RAND_INT_TYPE m;
double p1;
double xm;
double xl;
double xr;
double c;
double laml;
double lamr;
double p2;
double p3;
double p4;
} binomial_t;
-
npy_int64
random_binomial
(bitgen_t *bitgen_state, double p, npy_int64 n, binomial_t *binomial)
-
npy_int64
random_logseries
(bitgen_t *bitgen_state, double p)
-
npy_int64
random_geometric_search
(bitgen_t *bitgen_state, double p)
-
npy_int64
random_geometric_inversion
(bitgen_t *bitgen_state, double p)
-
npy_int64
random_geometric
(bitgen_t *bitgen_state, double p)
-
npy_int64
random_zipf
(bitgen_t *bitgen_state, double a)
-
npy_int64
random_hypergeometric
(bitgen_t *bitgen_state, npy_int64 good, npy_int64 bad, npy_int64 sample)
-
npy_uint64
random_interval
(bitgen_t *bitgen_state, npy_uint64 max)
-
void
random_multinomial
(bitgen_t *bitgen_state, npy_int64 n, npy_int64 *mnix, double *pix, npy_intp d, binomial_t *binomial)
-
int
random_multivariate_hypergeometric_count
(bitgen_t *bitgen_state, npy_int64 total, size_t num_colors, npy_int64 *colors, npy_int64 nsample, size_t num_variates, npy_int64 *variates)
-
void
random_multivariate_hypergeometric_marginals
(bitgen_t *bitgen_state, npy_int64 total, size_t num_colors, npy_int64 *colors, npy_int64 nsample, size_t num_variates, npy_int64 *variates)
Generate a single integer
-
npy_int64
random_positive_int64
(bitgen_t *bitgen_state)
-
npy_int32
random_positive_int32
(bitgen_t *bitgen_state)
-
npy_int64
random_positive_int
(bitgen_t *bitgen_state)
-
npy_uint64
random_uint
(bitgen_t *bitgen_state)
Generate random uint64 numbers in closed interval [off, off + rng].
-
npy_uint64
random_bounded_uint64
(bitgen_t *bitgen_state, npy_uint64 off, npy_uint64 rng, npy_uint64 mask, bint use_masked)