NumPy

Previous topic

numpy.polynomial.hermite.hermroots

Next topic

numpy.polynomial.hermite.hermfit

numpy.polynomial.hermite.hermfromroots

numpy.polynomial.hermite.hermfromroots(roots)[source]

Generate a Hermite series with given roots.

The function returns the coefficients of the polynomial

p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),

in Hermite form, where the r_n are the roots specified in roots. If a zero has multiplicity n, then it must appear in roots n times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, then roots looks something like [2, 2, 2, 3, 3]. The roots can appear in any order.

If the returned coefficients are c, then

p(x) = c_0 + c_1 * H_1(x) + ... +  c_n * H_n(x)

The coefficient of the last term is not generally 1 for monic polynomials in Hermite form.

Parameters
rootsarray_like

Sequence containing the roots.

Returns
outndarray

1-D array of coefficients. If all roots are real then out is a real array, if some of the roots are complex, then out is complex even if all the coefficients in the result are real (see Examples below).

See also

polyfromroots, legfromroots, lagfromroots, chebfromroots, hermefromroots

Examples

>>> from numpy.polynomial.hermite import hermfromroots, hermval
>>> coef = hermfromroots((-1, 0, 1))
>>> hermval((-1, 0, 1), coef)
array([0.,  0.,  0.])
>>> coef = hermfromroots((-1j, 1j))
>>> hermval((-1j, 1j), coef)
array([0.+0.j, 0.+0.j])