Previous topic

numpy.lexsort

Next topic

numpy.msort

numpy.argsort

numpy.argsort(a, axis=-1, kind='quicksort', order=None)[source]

Returns the indices that would sort an array.

Perform an indirect sort along the given axis using the algorithm specified by the kind keyword. It returns an array of indices of the same shape as a that index data along the given axis in sorted order.

Parameters:
a : array_like

Array to sort.

axis : int or None, optional

Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is used.

kind : {‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional

Sorting algorithm.

order : str or list of str, optional

When a is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties.

Returns:
index_array : ndarray, int

Array of indices that sort a along the specified axis. If a is one-dimensional, a[index_array] yields a sorted a. More generally, np.take_along_axis(a, index_array, axis=a) always yields the sorted a, irrespective of dimensionality.

See also

sort
Describes sorting algorithms used.
lexsort
Indirect stable sort with multiple keys.
ndarray.sort
Inplace sort.
argpartition
Indirect partial sort.

Notes

See sort for notes on the different sorting algorithms.

As of NumPy 1.4.0 argsort works with real/complex arrays containing nan values. The enhanced sort order is documented in sort.

Examples

One dimensional array:

>>> x = np.array([3, 1, 2])
>>> np.argsort(x)
array([1, 2, 0])

Two-dimensional array:

>>> x = np.array([[0, 3], [2, 2]])
>>> x
array([[0, 3],
       [2, 2]])
>>> np.argsort(x, axis=0)  # sorts along first axis (down)
array([[0, 1],
       [1, 0]])
>>> np.argsort(x, axis=1)  # sorts along last axis (across)
array([[0, 1],
       [0, 1]])

Indices of the sorted elements of a N-dimensional array:

>>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape)
>>> ind
(array([0, 1, 1, 0]), array([0, 0, 1, 1]))
>>> x[ind]  # same as np.sort(x, axis=None)
array([0, 2, 2, 3])

Sorting with keys:

>>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])
>>> x
array([(1, 0), (0, 1)],
      dtype=[('x', '<i4'), ('y', '<i4')])
>>> np.argsort(x, order=('x','y'))
array([1, 0])
>>> np.argsort(x, order=('y','x'))
array([0, 1])