Previous topic

numpy.bitwise_or

Next topic

numpy.invert

numpy.bitwise_xor

numpy.bitwise_xor(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'bitwise_xor'>

Compute the bit-wise XOR of two arrays element-wise.

Computes the bit-wise XOR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ^.

Parameters:
x1, x2 : array_like

Only integer and boolean types are handled.

out : ndarray, None, or tuple of ndarray and None, optional

A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.

where : array_like, optional

Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.

**kwargs

For other keyword-only arguments, see the ufunc docs.

Returns:
out : ndarray or scalar

Result. This is a scalar if both x1 and x2 are scalars.

See also

logical_xor, bitwise_and, bitwise_or

binary_repr
Return the binary representation of the input number as a string.

Examples

The number 13 is represented by 00001101. Likewise, 17 is represented by 00010001. The bit-wise XOR of 13 and 17 is therefore 00011100, or 28:

>>> np.bitwise_xor(13, 17)
28
>>> np.binary_repr(28)
'11100'
>>> np.bitwise_xor(31, 5)
26
>>> np.bitwise_xor([31,3], 5)
array([26,  6])
>>> np.bitwise_xor([31,3], [5,6])
array([26,  5])
>>> np.bitwise_xor([True, True], [False, True])
array([ True, False])